Mesoscopic Materials Research Laboratory Seminar

Date : August 22, 2016, 15:00-16:00

Room 204, Science and Technology Research Building 3

Supported by "Smart materials team" in organization of advanced science and technology, Kobe University

Dr. Iain F. Crowe

Photon Science Institute and School of Electrical and Electronic Engineering, University of Manchester, M13 9PL, UK

Erbium photoluminescence dynamics in the presence of size controlled silicon nano-crystals

Rapid thermal annealing is used to control the ensemble size distribution of silicon nanocrystals in thin silica (SiO₂) films co-implanted with erbium (Er) ions. The nano-crystal size distributions have been characterized using dark field mode X-TEM and are well described by a lognormal probability distribution function which provides characteristic values for the mean size, \overline{L} and the standard deviation, σ . Under non-resonant (473nm) pumping, the photoluminescence (PL) transients associated with the Er₃₊ first excited (4*I*_{13/2}) to ground state (4*I*_{15/2}) transition (1534nm) reveal a multi-exponential character indicative of the local environment of the emitting centres. A detailed analysis of the decay transients reveals two distinct classes of luminescent erbium; one of these populations, at a distance on the order of a bond length (~0.3nm) from the nano-crystal interface, exhibits a relatively short radiative lifetime (between 3 and 5ms) dependent on the size of the radiative rate induced by local changes in the refractive index for the Er close to a spherical dielectric interface. The second population, which exhibits a much longer lifetime (between 10 and 15ms), is characteristic of that of Er in a stoichiometric SiO₂ host, i.e. far from any silicon nano-crystals. The presence of a fast component (between 500 and 800µs) in all of the transients is attributed to non-radiative ion-ion interactions as a result of the formation of Er/Er-O clusters.