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ABSTRACT
In this paper, we propose a new driving mechanism for a

spherical rolling robot and investigate the dynamic characteris-
tics of the robot by theoretical analysis and numerical simula-
tions. The spherical robot has a momentum wheel(gyro) that
rotates at a large velocity inside the robot, and its mechanism
may be expected to provide the driving force efficiently. How-
ever, the dynamics of the robot is very complex because of the
angular momentum of the gyro. We derive the equations of mo-
tion for the spherical robot that include the effects of frictional
forces, and perform numerical simulations in order to examine
the behavior of the robot.

INTRODUCTION
Many studies on autonomous mobile robots such as a

wheeled mobile robot and a biped walking robot have been car-
ried out so far. In recent years, development of another kind of
mobile robot, a spherical rolling robot, has attracted the interest
of many researchers. A spherical robot rolls and moves on the
floor by using some actuators located in its inside, and would be
practically useful because it can achieve omnidirectional motion.
The driving mechanisms of the robot that have already been pro-
posed are grouped into several types according to the actuators;
reaction wheel type(Bhattacharya and Agrawal, 2000), moving
mass type(Javadi and Mojabi, 2004, Alves and Dias, 2003), and
so on. We are now developing a spherical robot that has a new
type of driving mechanism equipped with a gyro(Figs. 1 and
2). The gyro is rotating with a large velocity in the inside of the
robot, and the mechanism is designed so that the center of mass
of the robot lies at the geometric center of the sphere. By using

three motors located inside the robot, some of the angular mo-
mentum of the gyro is transferred to an outer spherical shell of
the robot, and the spherical robot moves on the flat floor. Al-
though the mechanism may be expected to provide the driving
force efficiently, the dynamics of the robot is very complicated
because of the angular momentum that the gyro has.

In this paper, we investigate the dynamic characteristics of
the robot by theoretical analysis and numerical simulations. The
equations of motion for the spherical robot are derived by mod-
eling it as a multi body system. These equations include the
effects of friction at the contact point between the outer shell and
the floor and friction at the internal mechanism. Under some as-
sumptions, the motion equations show that the angular momen-
tum of the robot about the contact point is conserved and that
nutation of an inner subsystem may be caused like a dual-spin
satellite. We design some simple controllers to control the trans-
lational motion of the outer shell, and examine the behavior of
the controlled system by numerical simulations. If there is a fric-
tion at the internal mechanism, nutation of the inner subsystem
may be quickly damped. If the mass center of the robot is a short
distance away from the center of the sphere, precession of the
system may be caused by the gravitational force.

MODEL OF THE SPHERICAL ROBOT
Prototype of the Robot

Figure 1 shows a photograph of the spherical mobile robot
under development. The radius of sphere is 15[cm], the weight
of the robot is about 4.9[kg], and power supply, sensor and etc.
are located in the robot so that it can move autonomously. The
spherical robot is composed of four bodies, gyro, gimbal, gyro



Figure 1. Prototype of a
spherical robot
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Figure 2. Schematic model of the
robot

case and outer spherical shell(Fig. 2). The hardware of the robot
is designed so that the mass center of the system would coincide
with the geometric center of the sphere. Two motors are located
at the rollers attached to the gyro case in order to generate the
driving torques about the axes perpendicular to the rotation axis
of the gyro, and one motor is located in the gimbal in order to
generate the driving torque about the rotation axis of the gyro.
By using these motors, some of the angular momentum of the
gyro is transferred to the outer shell, and the robot moves on
a horizontal surface. At the initial point, the direction of the
rotation axis of the gyro is set to be perpendicular to the surface.

Equations of Motion
We consider the motion of the spherical robot that rolls on a

horizontal surface. The equations of motion are derived by mod-
eling it as a multi body system composed of three rigid bodies.
It is assumed that the gyro case and the gimbal are regarded as
single rigid body for simplicity, and it is called gyro case again.
The three bodies, outer shell, gyro case and gyro, are labeled as
body 1, 2 and 3 respectively. We introduce a set of unit vectors
{aaa(0)}= {aaa(0)

1 aaa(0)
2 aaa(0)

3 } fixed in an inertial space and a set of unit

vectors {aaa(i)} = {aaa(i)
1 aaa(i)

2 aaa(i)
3 } fixed in body i (i = 1,2,3). The

origin of {aaa(i)} is the mass center of body i, and the directions of
aaa(i)

j are along the principal axes of inertia of body i ( j = 1,2,3).

And aaa(0)
3 is chosen so that it is along the vertical direction.

We introduce the following vectors and matrix.
ωωωi j : angular velocity of {aaa(i)} with respect to {aaa( j)}
rrr0 : position vector from the origin of {aaa(0)} to the ge-

ometric center of the sphere of the outer shell,
r(0)

0 = [x,y,z]T

RRRi : position vector from the geometric center of the
sphere to the origin of {aaa(i)} (i = 1,2,3)

rrrs : position vector from the geometric center of the
sphere to the contact point between the outer shell
and the horizontal surface, r(0)

s = [0,0,−r]T

A(i, j) : a coordinate transform matrix from {aaa( j)} to {aaa(i)}
where r is a radius of the sphere, and, for a vector bbb, we denote
the expression of the vector bbb in the frame {aaa(i)} as b(i). The
mass and inertia of each body are denoted as follows.

mi : mass of the body i
JJJi : inertia matrix of the body i about the origin of {aaa(i)},

Ji is the expression of JJJi in the frame {aaa(i)}

The orientation of {aaa(1)} with respect to {aaa(0)} and the one of
{aaa(2)} with respect to {aaa(1)} are denoted by Euler parameters,
p = [p0, p1, p2, p3]T and q = [q0,q1,q2,q3]

T respectively.
The Euler parameters p and q always satisfy the relation of
∑3

i=0 p2
i = ∑3

i=0 q2
i = 1, and their time derivatives are calculated

as follows(Schaub and Junkins, 2003).

ṗ =
1
2

Q(p)ω(1)
10 , q̇ =

1
2

Q(q)ω(2)
21 , Q(s) =

⎡
⎢⎢⎣
−s1 −s2 −s3
s0 −s3 s2
s3 s0 −s1
−s2 s1 s0

⎤
⎥⎥⎦

The orientation of {aaa(3)} with respect to {aaa(2)} is expressed by
the rotation angle θ of the gyro.

From the above expressions, the state of the system is de-
noted by ξ = [r(0)T

0 , pT ,qT ,θ]T . The time derivative of ξ can be
expressed as

ξ̇ =

⎡
⎢⎢⎣

I3
1
2 Q(p)

1
2 Q(q)

1

⎤
⎥⎥⎦η ≡Uη , (1)

where I3 is a 3 × 3 unit matrix and η = [ṙ(0)T
0 ,ω(1)

10 ,ω(2)
21 , θ̇]T .

Since the spherical robot rolls on a horizontal surface, the outer
shell always touches the surface. Therefore, the following holo-
nomic constraint holds: Φ = [0,0,1](r(0)

0 + r(0)
s ) = 0. Under this

constraint, the equations of motion for the spherical robot are
summarized in the following form.

L̇+ΩL+V P = N +F +λΦUT (∂Φ/∂ξ)T + τ (2)

In Eq.(2), L is the generalized momentum corresponding to the
variable η, N and F are the generalized forces including gravi-
tational force and frictional force respectively, λΦ is the normal
force at the contact point between the sphere and the horizontal
surface, and τ is a term depending on the input torque τττ2 that acts
on the gyro case from the outer shell.

Friction Models
We introduce some friction models in order to determine

the generalized force F in Eq.(2). Three kinds of frictions at the
contact point between the outer shell and the floor and a friction
between the outer shell and the gyro case are considered.
a) sliding friction
If the spherical robot rolls on a horizontal surface without slip-
ping, the motion is subject to the following nonholonomic con-
straint: Ψ = ṙ(0)

0 − r(0)
s ×ω(0)

10 = 0, where Ψ is a velocity vec-
tor of the contact point expressed in the frame {aaa(0)}. Then,
by the Lagrange undetermined multiplier method, F includes
a term expressed as Fs = λΨ(∂Ψ/∂η)T . Here λΨ is a slid-
ing frictional force under no-slip condition, and it is assumed
that ‖λΨ‖ ≤ µλΦ where µ is a static friction coefficient. If
‖λΨ‖ > µλΦ, the slip of the outer shell occurs. Then, we assume
that the following dynamic friction k(0) acts at the contact point :
k(0) = −µ′λΦΨ/‖Ψ‖, where µ′ is a dynamic friction coefficient.



When the outer shell slips on the floor, the term Fs is calculated
from the dynamic friction k(0) and has the form Fs = Fs(k(0)).
b) rolling friction
When the outer shell rolls on a horizontal surface, it may be as-
sumed that the following rolling friction acts at the contact point
due to small deformations of the outer shell and the surface:
M(0)

r = (µr/‖ṙ(0)
0 ‖)· ṙ(0)

0 ×[0,0,λΦ]T, where µr is a positive con-

stant. Then, a term Fr(M
(0)
r ) is added to the generalized force F .

c) frictional torque at the contact point about the vertical axis
When the outer shell is rotating about an axis perpendicular to
the horizontal surface, a frictional torque to damp the rotation
may act on the outer shell. We assume that it has the following
form: M(0)

z = −µzλΦ[0,0,1]ω(0)
10 , where µz is a positive constant.

Then, a term Fz(M
(0)
z ) is added to the generalized force F .

d) frictional torque at the internal mechanism
The actuators between the outer shell and the gyro case generate
the driving torque τττ2. The driving mechanism includes motors,
gears, belts, etc., and some frictions exist between the outer shell
and the gyro case. We assume that they can be expressed by
M(2)

i = −µiω
(2)
21 , where µi is a positive constant. Then, a term

Fi(M
(2)
i ) is added to the generalized force F .

DYNAMIC CHARACTERISTICS OF IDEAL ROBOT
In this section, we consider an ideal robot that satisfies the

following assumptions.
Assumptions

1. The center of mass of the spherical robot lies exactly at the
geometric center of the sphere. That is, RRR1 = 0 and m2RRR2 +
m3RRR3 = 0.

2. Any frictional forces other than sliding frictional force do
not work. Therefore, F = Fs.

3. The rotation axis of the gyro is parallel to one of the princi-
pal axes of inertia of the gyro case.

4. The outer shell is completely spherically-symmetric. There-
fore, J1 = diag{ j, j, j}.

Under the above assumptions, the angular momentum of the
spherical robot about the contact point is conserved.

HHH =
3

∑
i=1

JJJiωωωi0 − rrrs × (m1 +m2 +m3)ṙrr0 = const. (3)

Furthermore, the equations of motion of a subsystem composed
of the gyro case and the gyro can be expressed as follows.

3

∑
i=2

(
J̇JJiωωωi0 + JJJiω̇ωωi0

)
= τττ2 , aaa(3)T

3 ω̇ωω30 = 0 (4)

Equation (4) is the same as the one for a dual-spin satellite that an
external force τττ2 acts on. Precession and nutation may be caused
by the angular momentum that the gyro has. Nutation period T
can be approximately obtained from Eq.(4) as follows.

T = 2π
√

(J2x + J3xy)(J2y + J3xy)/(J3z|θ̇|) , (5)

where J2 = diag{J2x,J2y,J2z} and J3 = diag{J3xy,J3xy,J3z}.

NUMERICAL SIMULATIONS
We carried out many numerical simulations by using some

simple controllers and various sets of physical parameters. For
the sake of brevity, this section provides only the results in three
cases that represent characteristic behaviors of the system.

Controllers
We consider two types of control inputs, an impulse input and a
feedback input.
• Controller 1 (impulse input)

τ(2)
2 =

{
[0,1.0,0]T [N·m] for 0 ≤ t < 8.0×10−2[s]
[0,0,0]T [N·m] for t ≥ 8.0×10−2[s]

(6)

• Controller 2 (position control)
To make the robot move in a straight line with constant veloc-
ity and change the position of the robot, the following simple
feedback controller is designed.

τ(2)
2 = K1A(2,0)(ω(0)

10 −ω(0)
10d)−K2diag{1,1,0}ω(2)

20 , (7)

where K1 and K2 are positive constants and ω(0)
10d is the desired

angular velocity of the outer shell. K1 and K2 are set to 1.0 and
1.0 respectively, and ω(0)

10d is chosen as

ω(0)
10d =

{
[0,1.0,0]T for 0 ≤ t < 5.0[s]
[0,0,0]T for t ≥ 5.0[s] . (8)

The second term in the right-hand side of Eq.(7) is added in or-
der to damp nutation of the subsystem.

Physical parameters
In numerical simulations, we choose the mass and inertia of each
body as follows. m1 = 1.0[kg], m2 = 2.8[kg], m3 = 1.0[kg],
J1 = diag{0.015,0.015,0.015}[kg·m2], J2 = diag{0.018,0.018,
0.020}[kg·m2], and J3 = diag{0.0026,0.0026,0.0052}[kg·m2].
The radius of the sphere r is set to 0.15[m]. The center of mass
of each body is chosen as in the following two cases.
• Parameters 1 (assumption 1 is satisfied)

R1 = R2 = R3 = [0,0,0]T [m].
• Parameters 2 (assumption 1 is not satisfied)

R1 = [0,0,0]T [m], R2 = [0.004,−0.006,−0.007]T [m]
and R3 = [0,0,0.01]T [m].

At the initial point, the outer shell and the gyro case are at rest,
and the rotational velocity of the gyro θ̇ is set to 100[rad/s].
Therefore, the initial angular momentum of the robot is H(0) =
[0,0,0.52][kg·m2/s]. The coefficients of frictional forces are
chosen as µ = 0.8, µ′ = 0.3, µr = 3.0 × 10−4[m], µz = 3.0 ×
10−4[m·s], µi = 0.2[kg ·m2/s].

The simulation results are summarized as follows.
Case 1 (Controller 1, Parameters 1 , F = Fs)
In this case, the controller (6) is applied to the ideal spherical
robot. After t = 8.0×10−2[s], the outer shell moves with a con-
stant velocity ṙ(0)

0 = [−0.098,−1.1× 10−4,0]T [m/s], and nuta-
tion of the subsystem is caused as shown in Fig. 3. The period of
nutation is about 0.25[s], which coincides with the theoretical re-
sult in Eq.(5). The angular momentum HHH is conserved along the
motion as shown in Eq.(3). Moreover, if the generalized force F



includes the term Fi, the nutation disappears rapidly because of
the friction between the gyro case and the outer shell.

Case 2 (Controller 2, Parameters 1 , F = Fs +Fr +Fz +Fi)
In this case, the controller (7) is applied to a spherical robot that
does not satisfy the assumption 2. It is assumed that all frictional
forces are added to the motion equations, that is, F = Fs + Fr +
Fz +Fi. Figure 4 shows that the robot moves along the x direction
and the translational motion stops at (x,y) = (0.59,−0.018)[m].
However, after that, a rotational motion of the outer shell about
aaa(0)

3 still remains and slowly fades out. The angular momentum
HHH is not conserved along the motion because of the frictional
torques M(0)

r and M(0)
z . Therefore, when the translational motion

stops, the rotation axis of the gyro can not return to its initial
direction(Fig. 5). The angle η between the rotation axis and
aaa(0)

3 that is defined as η = cos−1(aaa(0)T
3 aaa(3)

3 ) is about 0.14[rad] at
t = 10[s], and reaches its maximum value of about 0.31[rad] at
t = 5[s].

Case 3 (Controller 2, Parameters 2 , F = Fs +Fr +Fz +Fi)
In this case, the controller (7) is applied to a spherical robot
that does not satisfy the assumptions 1 or 2. Figure 6 shows
the behavior of the rotation axis of the gyro for 0 ≤ t ≤ 70[s].
Precession of the subsystem is caused like a spinning top by
the gravitational force. The angle η reaches about 0.82[rad] at
t = 70[s]. Because of the precession, the translational motion of
the outer shell can not stop and the outer shell moves about near
(x,y) = (0.62,0.01)[m]
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CONCLUSION
In this paper, we derived the equations of motion for a spher-

ical rolling robot equipped with a gyro, and examined the dy-
namic characteristics of the robot by theoretical analysis and
numerical simulations. For an ideal spherical robot that satis-
fies some assumptions, the angular momentum of the robot is
conserved and nutation of the inner mechanism may be caused.
However, if there is a frictional torque at the contact point be-
tween the outer shell and a horizontal surface, the angular mo-
mentum can be changed. In the case where there is a friction
between the gyro case and the outer shell, the nutation of the
inner mechanism is quickly damped. On the other hand, when
the mass center of the system is a short distance away from the
center of the sphere, precession of the system may be caused by
the gravitational force acting on the system. Motion control of
the robot with the precession would be difficult.
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Figure 5. Behavior of the rotation axis of the gyro (Case 2)
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