Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima

o
= Introduction (1/2)
= Contents of the Lecture
= Components & technologies in high-
performance systems
= high-performance microprocessors
= shared memory systems
=« distributed memory systems
= accelerators
= Methodologies of high-performance
computing for;
= explicit solver of diffusion equations
= (& matrix-matrix multiply, linear solvers, ...)
> Skills in high-performance programming with
deep understanding of parallel systems
2

Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima

i Massively Parallel
—_— Computer Architecture
Hiroshi Nakashima
(ACCMS, Kyoto University)
,,_.\ Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima

2 Introduction (2/2)

n Course Management
= Course materials (Slides)
= pptx/pdf files has been (or will be) distributed
by graduate school office.
= Paper-version handout is only for the first
portion.
= Achievement evaluation
= By exercise report.
= Theme will be given on the last day.

=« Theme will be on high-performance
programming (rather than “impression of

lecture”).

/'_“\
= = Solving Diffusion Equation (1/4)

= Discretized & Approximated Solver of
Initial/Boundary-Value Problem of
2-dimensional vz(p:?‘/’
e

o =u(x,y,t)

., d%u ol
Vip=—F+_—

ox® oy

"u _u(x+4x,y,)-2u(x, y,) +ulx - 4x, y, t)
ox? Ax?

ou _ulx,y, t+4t)-ulx, y,t)

ot At

B ux,y,t+at) = ulx,y,t) +
A—:(u(xm,y,t) +ulx-h,y,0) + ulx,y+h,t) + u(x,y-h,t) -

4

4u(x,y,1)

Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima

Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima

/'_"‘\

= = Solving Diffusion Equation (1/4)

u(x,y,t+At) =ulx,y,t)+
At
= (u(x+h,y,t) + ulx-h,y,t) + ulx, y+h,t) + u(x,y-h,t) -

4u(x,y,t))

for(t=0; t<tmax;t++) {
for(y=0;y<ny;y++) For(x=0;x<nx;x++)
un[y] [x]=ulyl[x]+
(dt/(h*h))*(ulyl [x+1]1+uly][x-1]+
uly+11[xJ+uly-11[x]1-
4*ulyl[xD:
u=tmp;

tmp=un; un=u;

/'_"‘\

= = Solving Diffusion Equation (1/4)

= c.f. Similar Code (1)
Jacobi/red-black SOR solver of Vip=g

¥

for(y=0;y<ny;y++) For(x=0;x<nx;x++)
unlyl[xJ=a*(ulyl[x-1]+ulyl[x+1]+
uly-11[xJ+uly+11[x1);

for(odd=0;o0dd<2;odd++)
for(y=0;y<ny;y++)
for (x=odd™(y&1) ; X<nx;x+=2)
ulylx]=a*ulyl[x1+
b*(uly][x-11+ulyl[x+1]+
uly-11[x]+uly+11[x1);

Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima

)

VxE=-—

for(z=0;z<nz;z++) for(y=0;y<ny;y++)

Solving Diffusion Equation (1/4)
= c.f. Similar Code (2)

Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima

oB
ot

¥

For(x=0;x<nx;x++){
b[z]1[y][x]-x+=
elz+110y1[x1-y - elz1Lyl[x1-y-
e[z1[y+11[x1-z + el[z]lLyl[x]-z;
blzZ1Ly1[x].y+=...;
b[z]Ly1[x]-z+=..-;

n-)))'

Parallelism & Locality (1/4)
= Principle of High-Performance =P + L

= Parallelism
= in: instructions/operations,
innermost loops, outer loops,
functions/procedures, programs, ..
= by:hardware, compilers, programmers
= Locality: Systems believe/expect that ...
= temporal: an event which happens now will
likely happen again in near future; and
= spatial: a series of temporally proximate events
are likely proximate spatially;
and thus codes against the belief/expectation
should run very slowly.

o ,.%.\ Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima [ﬁ\ Massively Parallel neratlve eXeCUthn Of
%= Parallelism & Localitnstructions in loop body
— =>hit to instruction cache

= Parallelism & Locality (2/4)

. Parallellsm in DE-solver loop

for(t=0;t<tmax;t++) { innermost loop
for(y=0;y<ny;y++) For(x=0;x<nx;x++)
unfy][x]1= instruction/operation-
uly1[x1+ level parallelism
@@t/ (h*h))*(uly]l [x+1]+uly][x-1]+
uly+11DxJ+uly-11[x1-
4*ulyllxD;

tmp=un; un=u; u=tmp;

}
u and un have loop-carry dependence
=outermost loop cannot be parallelized

= Temporal Locality in DE-solver loo

for(t=0;t<tmax;t++) {
fOr(y‘O'y<ny'y++)|for(x=o;x<nxpx++)

unyl[x]= Eontmually accessed |X§a| scalaﬂ
u[y] X + variables = on-register
/[(@t/(h*h))*(uly] [x+11+ulylRx-11+
continual access to uly+11D<J+uly-1\x]1-
an array element H—]
Don-register ? A*uy1D0x1D:
tmp?tm;\uEu; u=tmp; r:ontinuous establishment
hot easily done in C of brapch condition o
€the element can be updated Dbasics of branch prediction)
by another assignment between

two references
=>safely done in this case

10

Massively Parallel Comp. Arch. (1) © 2010-2017 H. Nakashima
X Parallelism & Locality (4/4)
" Spatlal Locality in DE-solver Ioop
for(t=0; t<tmax;t++) { thus x is inner|

for(y=0;y<ny;y++) |for(x=0 IX<NX;X++)

unlyl[x]= continuous inside/outside
ulyl1Dx1+ an iteration (¢ Fortran)

@t/ h*h))*(uly] [x+1]1+uly] [x-11+
uly+11[xJ+uly-110x1-

4*uly1[xD;

tmp=un; un=u; u=tmp;

instructions are ranked
continuously

}

11

