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Performance Microprocessors
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Execution
= basic mechanism of instruction execution
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cope with them
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= predicting branch address and direction
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= Overview (1/4)
= Factor to Determine Performance

= First-level Approximation =
#basic-ops (®machine insts) X1 /frequency
For(x=0;x<nx;x++)
unylxJ=ulyl[x]+
dt/(h*h))*(uly] Dx+11+u[y][x-1]+
uly+1]1[xJ+uly-11[x1-
4 ulylxD:
=u[1[]..5, un[1[]1=F..1
register) , f=f+f...5, f=f*f..3, f=f/f..1
»g++..1, g<g..1, ifQgoto..1
= 18/frequency?
= supercomputer in KU (18core Xeon)

= 7/frequency 3

= Overview (2/4)
= Why “#ops/freq” Overestimates

= Parallel Execution of Multiple Insts

= in KU’s supercomputer
« f=mem X 2
« mem=F X 1
« F=F+F X1
« {f=F*f, f=F/f} X 2 (except for f=F/F X 2)
« integer insts 3 {g++, g<g, if(Qgoto} X 4

can be executed in paraIIeI
> max((f=mem)X5/2, (nem=F)X1/1, (some other restrictions
(F=F+F)X5/1, (F=F*F) X3+ (F=F/F)X1)/2,

((g++)X1+(g<g) X1+ (1 T()) X1)/4)
=5?(<7)
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Overview (3/4)

= Why max(...) Underestimates
= Latency of Depending Instruction

= in KU’s supercomputer (unit=cycle)
« T=mem... 5 (+7+23+607) —{1st/2nd/ 3rd-level cache miss]

« T=F+F.. 3, f=F*f ... 5, f=Ff/f..14(11)
v iTOQOTO ... 1 (#1524T+..) 5-cycle for next divide

branch misprediction /
1st/ ... cache miss

e
T

=avoid division as much as possible!!
= c.f. other representative ops

= g=mem... 4 (+...)

= g=g+g ... 1, g=g*g ... 3, g=9/g ... 20~26

L Loop-invariant code motion is a
= Overview (4/4) fundamental op on but not alway
= (able to be) done by compilers.

= Avoiding Divisio

_ R - When un, dt, h are global, a compiler
dthh=dt/(h*h); might unsure that dt and h are
for (t=0; t<tmax;t++){ invariant due to update of un[1[1- )
for(y=0;y<ny;y++) For(x=0;x<nx;x++)
un[y1[x1=ulyl1[x1+ | borom—
* _ esson-1: Do a simple
dthh*(uly] D+ 1]+uly] [x-11+ optimization by yourself.
uly+11[x1+uly-11[x1-| jesson-2: Don’t use
4*ulyl[xD); global variables in a loop
—un- —- = - if possible. (e.g., move
3 tmp=un; un=u; u=tmp; them into local variables)
= Performance of Modified Code in KU’s
Supercomputer = 5~6 /frequency
= Reasons why >5 are shown later.
= Many pitfalls to make >> 6
= Key issues are to avoid them 6
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= Basics of Instruction Pipeline (1/6) = Basics of Instruction Pipeline (2/6)
= Instruction Pipeline = Part of DE-solver loop (assume latency=1)
= Split instruction execution flow into multiple rbAbetlabed Ababe s sbebd sy id
stages_ fuzp= Fuzm= fuzp= fupz= fuzp=
*(guy+gx+8)  *(guy+gx-8)  fuzp+fuzm *(guyp+gx)  Ffuzp+fupz
= All stages work in parallel. IF [1=*PCi+; T=*PC++; T="PCr+; T=*PCt+; T=~PCi+;
D A=guy; A=guy; A=fuzp; A=guyp; A=fuzp;
= In Textbooks ... B=gx;C=8 B=ux;C=8 B=fuzm; B=gx; B=fupz;
EX [D=A+B+C; D=A+B-C; D=A+B; D=A+B; D=A+B;
MA | N=*D; M=*D; M=D M=*D M=D
IF (D D O:) EX O:> MA O:) WB w8 [fuzp=Il; Tuzn=N: Fuzp=1i; Fupz1; Tuzpi;
I-Fetch I-Decode Execute Mem Access  Write Back _
fuzp=*(guy+gx+8) \ IF | ID [EX|MAIWB
> (up to) 5 (=#stages) instructions are executed fuzm=*(guy+gx-8) IF | ID |[EX[MAWB
in parallel. fuzp=Ffuzp*fuzm IF [ID [EXMAWB
= In Reality ... fupz=*(guyp+gx) IE] 1D [Ex[malws
. fuzp=fuzp+fumz IF | ID |[EX|MAWB
= =20 stages (or more) and more complicated (as P P
H 7 8
discussed later) | o
° ,,?\ Massively Parallel Comp. Arch. (2) © 2010-2017 H. Nakashima ° ,,?.\ Massively Parallel Comp. Arch. (2) © 2010-2017 H. Nakashima
“ Basics of Instruction Pipeline (3/6) “ Basics of Instruction Pipeline (4/6)
= Hazard due to Instruction Dependence = Latency 2 2 2 not always avoidable
and Remedy for it = Stall
= true/flow dependence = Even when latency of f=mem, f=F+f, f=f*fis 2 ...
= output of predecessor is used by successor
= RAW (read-after-write) hazard avoid hazard by cannot be bypassed
_)'—’generat_eluse}-:mmg is :Fversed. bypassing data
ypassing orwarding through stages
fuzz=+(guy+go] ' [ 0 | X wa Lwe
gx=gx+g | IF | 1D ] EX wB B 2y
A=gx P=A+B| =D ?X_M 7 fuzz=fuzz*ffour IF D4 » Eh)/l(— A*'gA "‘5’:
gX<gnX8 IF | ID4| EX { MA |wB fuzz - M
A=g D_A_7 M=D jp=M<0 fupz=Ffupz-fuzz IF IBE“ » EX_ MA fXVE:
IDé EX fuzz M=A-B ﬁ\
RAW hazard in a A=g detect RAW hazard
straightforward IDQ EX and stall
implementation A=g 9 10
L ® )
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% Basics of Instruction Pipeline (5/6) % Basics of Instruction Pipeline (6/6)
- - ti-dependent: - -
= Remedy=Static Scheduling (1/2) |iee3afine = Remedy=Static Scheduling (2/2)
flow dependent dependency
2|@
@gtmp=gx |
A 4
@ox=gx+8 removing anti-
1 dependence
@ffuzp=tuzp+fuzz | @gx<gnx8______]|by register
1 1 renaming
@3F(uny+g)=fuzp }———— @¢[if(<x)goto | if(<)goto
12
L@ ]
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Z ILP (1/13)

= ILP: Instruction Level Parallelism

= Execution order of mutually independent
instructions can be modified arbitrarily.

>They can be executed in parallel

>Execute multiple instructions in parallel
with multiple function units (e.g. ALUs)

] Val’iants scalar means “not vector (processor)”

= super scalariexecute ordinary instructions
very long = static: in-order execution of compiled code (1990’s)
inst. word = dynamic: change order at run time (out-of-order, now)
singienst. )| VLIW: one instruction performs multiple
multiple data] operations (e.g. Iltanium)
= SIMD: one instruction operates on multiple data
(SSEx: streaming SIMD extension, AVX) 13
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= ILP (2/13)

= KU’s Supercomputer
= Issue Rate = 7 (#operations which can start at
every cycle)
= #Function Units
= {g, f}=mem X 2, mem={g, F}X 1
o {F=FF[+F], F=F+F} X 1, {F=FF[+F], F=F/F} X 1,
= {g++,0<0} X 2, {g++,0<g,if(Ogoto} X 2

(remark: #FP-ops + #int-ops < 4)

=2 maximum execution throughput (IPC)=7
= (16inst/7)/iteration = 2.3 cycle/iteration ?

14

Massively Parallel Comp. Arch. (2) © 2010-2017 H. Nakashima

).

Facn

Z ILP (3/13)
= Static Scheduling
= Latency of f=mem, F=F{+,*}F =2

@ uz=*
@Tp:}uzp-*-fuzm 2

2y
@[fuzp=tuzp+fupz 2

@Jgx=gx+8

@fFuzp=T

2y 2 1
@fuzp= @Jgx<gnx8 |

2 1
[*(guny+gtmp)=Tuzp] @[if(ygoto |

(9+6=15literation & IPC=17115=1.13) 15
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Facn

= ILP (3/13)

= loop unrolling
= Expand k iterations to have one iteration
= Improve parallelism in loop body (& reduce loop-
control overhead)
For(x=0;x<nx;x++) unly][XJ=ulyl[x]+..-;

‘ 4-way unrolling
For(x=0;x<(nx/4)*4;x+=4){

un[y] [x+0]=u[y] [x+0]+...;

unLy] Dx+1]=uly] [x+1]+...;

un[y] [x+2]=uly][x+2]+-.--;

un[y] [x+3]=uly][x+3]+---;
¥
for(Gx<nx;x++) un[yl[x1=ulyl[x]+-..;

16
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= ILP (5/13)
= Dependence Graph of 4-way Unrolled Loop
x=4i+0 4i+1 x=4i+2 x=4i+3

QAT
G
S
@] @]

if #registers is
sufficient

(24l(aviteration) & IPC=56/24=2.33 (68/24=2.83) ) 17
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= ILP (6/13)

= Limitation of Static Scheduling (incl.
Loop Unrolling) = Insufficient

Parallelism inside one or k lterations

A+ Lx-1]gtmp [T
@IDHLI-1]_gx a7+ =
Sep o g
GLy+y+1 + @q + >
Gy+ _+ y+L x1=| +
@+ v-1y-1 x]=[ +
declining (8] _+ -1]y-1 x1=
lleli % X1 [ | + €3ba=[ it ]
IXI] + 1
gg K [ x=4i+0
T [ x=4i+1
gg + [ x=4i+2
. . [x=ais3
= Scheduling across lIterations
= Software Pipelining 18
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= ILP (7/13) = ILP (8/13)
= Software Pipelining = Dynamic Scheduling
Y x+1 X+1 - - -
gm [x+1] =dynamic execution ordering
GIx-1y+L x-1J[y+1]] - -
(AT T £ T automatically done by microprocessor
(O ERN] - 1 IX1 0 . . . .
6] + [Ix + [Ix 2 = Out-of-order issue of executable instructions wi
E [ ] o= Out-of-ord f tabl truct th
7 £l - * — il = - . -
IO VT L e ready-to-use operands irrespective of their
9f + ‘combine with] [+ e program order
e (" |next iteration e | EH £= ) . .
s ggx”l with shift - ggx"l - = Dynamic register renaming to remove
£ z = e unnecessary restriction of execution order
T DI = 3 . . . . .
L - e = Speculative execution of instructions given by
9 + branch predictor
+ +
XI=[ < I <] = Reordering for in-order completion to cope with
@=L TT bg=] 1T — branch misprediction, exception, interrupt, etc.
10/(2+iteration) - B
2way-unroll and perform IPC=30/10=3.0
scheduling a little bit loosely (34/10=3.4) 19 20
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= ILP (8/13)

fuzp=*(guy+gx+8) [mf" O
fuzm=*(guy+gx-8) ﬂfl (0]

multiple issue of (e.g.) 4 instrunctions)

H f h out-of-order issue
uzp=Ffuzp+fuzm . .
fupz="(guyp+gx) add: wait fo!' loaded data
fuzp=Ffuzp+fupz load: not wait for add
fupm=*(guym+gx) ~
:UZP:I'EZP“U"‘; 8 register renaming:

uzz=*(guy+gXx . . .
fuzz=fuzz*ffour = o dyn_amlc mapping from Ioglc.al
fuzp=Fuzp-fuzz ¥ O registers (f=16/g=16) to physical
fuzp=fuzp*fdthh Ix] O registers of larger amount Y,
fuzp=Ffuzp+ftmp | T 1*] ©
*, =F .
~Ggunyo=fuzp : [T 1 [ ml /(0/ speculation:
gx<gnx8 i o execute predicted insts
if(<)goto il [¢) before branch target
fuzp=>(quy+gx+8) is determined
fuzm=*(guy+gx-8)
fuzp=fuzp+fuzm + -
fupz=*(guyp+gx) reordering:
fuzp=Ffuzp+fupz + complete when
Fupm=*(guym+gx) all predecessors
fuzp=fuzp+fumz +

complete
(e.g. up to 4 insts)

Fupm=*(guym+gx)
21

= ILP (9/13)
= How Out-of-Order Execution Progresses

5literation>4/iteration \
= #instructions to start/complete
increases monotonically
= reservation station (60@KU) for inst
to start and/or reorder buffer (192@KU)
for inst to complete will be exhausted
=> effective fetch/issue rate becomes
3.2/cycle eventually

actual latency (e.g. in KU) of
load/FP-ops > 2

S buffers exhaust frequently
=hard to find executable insts
Dlikely to be > 5/iteration

22
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ILP (10/13)

= Exploiting SIMD (AVX) Mechanism

= ymm: 256-bit media register
= char X 32, short X 16, int X 8, long long X 4
= float X 8, double X 4

= perform a particular operation on multiple data

= 4-way unroll and perform 4 ops by one inst

For(x=0;x<nx;x+=4) {

unlyllx]  AuIy1L

dthhiiCuly] Dx+11uly] [x-11puly+110x1 [y-11[x1 uy1xD;
un[y] [x+11FuIyD L

dthhiu Dy D21y 10

un[y] [x+21=u [yl [kr2

dthh(uLy] De+31HIDY] Dx+ 1T Dy+1] [x+ 2T Dy -1] [x+ 21 i Iy [x+21) 5
un[y] [x+31gu Lyl [x31

dthhtj(uly] [x+41Hu Lyl Dx+2Tfu Ly +11 Dx+31u [y - 11 Dx+31 AU Dyl [x+31) 5

Ly+11Dx+1]rHLy-11[x+1] YIDx+1D);

= but compilers often fail to SIMD-vectorize
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Z ILP (11/13)

= Why Compilers Fail to SIMD-vectorize
for(x=0;x<nx;x+=4) { &un[yl[x]==&uly]1[x+3]
unly]1x]1 =ulyl[x] 2> mutually dependent

un[y][x+3]=uly] [x+3]Hdthh*(...);
‘ this transformation does

not preserve semantics
if dependent
for(x=0;x<nx;x+=4) {
double tO=u[y][x] thh*(...);

double t3=u[y] [x+3]Hdthh*(. ..);
unfyl[x] =t0; . they are independent

SIMD-vectorizable if
this transformation is
correct

dthh*(...);

actually they are
independent definitely
but compilers are often
ignorant of it

}

un[y][x+3]=t3

24
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Z ILP (12/13)

= How to Make Loop SIMD-Vectorizable
for(t=0; t<tmax;t++){
double (*restrict uu)[NX]=u,
(*restrict uun)[NX]=un;
for(y=0;y<ny;y++) for(x=0;x<nx;x++)
uun[y] [x]=uuly] [x]+
dthh*(uu[y] [x+1]+uuy] [x-1]+
uuLy+1] [x1+uu[y-1] [x]-4*uuly] [XD) ;

tmp=un; un=u; u=tmp;

h may run incorrectly if
N assurance is incorrect
= *restrictp

=*p or *(p+exp) is not be updated by a pointer other than p
=>programmer assures &uun[y][x]'=&uuly*]1[x"]

=>»SIMD-vectorizable =» 1.8 cycle/iteration (> lower bound=1.25)
25

Massively Parallel Comp. Arch. (2) © 2010-2017 H. Nakashima

).

= ILP (13/13)

= Fine Tuning and Caution
uun[y]1Dx1=uuly]1 X1+
dthh*(uuly] [x+1]+uul[y][x-1]+
uuly+1] [x]+uuly-11[x]-4*uuly1[xD);

‘ This transformation does not preserve
program semantics
uuny] DxJ=uulyl1[x1+ € FP operations are not associative

dthh*((uuly] [x+11+uuly][x-11)+
(uuly+11Dx7+uuly-11[xXD-4*uuly1[xD;

operation result of tuned code
may be slightly different from
original one

reduce total latency of RHS
= reduce #-of in-flight instructions and
possibility of buffer exhaustion
=»increase chance to find executable
instructions

26
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= Branch Prediction (1/8)

= Control Dependency

= Target of branch instruction (& its successors)
depends on the branch.

= Control hazard makes pipeline stalled during fetch

and decode of branch target which takes place
after calculation of branch address and direction.

branch address and
direction are determined

fetch and decode
of branch target
=15 cycle

gx=gx+8

gx<gnx8
if(<)goto
fuzp=*(guy+gx+8)

27
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Branch Prediction (2/8)

= Predicting Branch Address

= Correspondence of (address of) branch instruction
and target address is usually invariant (if taken).
0x124C:if(<)goto xloop(=PC-94=0x11E0)

= Branch Target Buffer (BTB)

= A kind of cache to keep (inexact) correspondence of
branch instruction address and target address.

= On the fetch of (branch) instruction, simultaneously
lookup BTB to get “maybe target address™.
> Branch latency = 1 if success.
« BTB@KU: 4K(??) entry (+ for indirect branches)
= Return Address Stack (RAS)

= Stack to predict return address:
push by call / pop by return

= RAS@KU: 16(??) entry 28

J-}-)))-
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Branch Prediction (3/8)

= Predicting Branch Direction
= Directions of a conditional branch (are expected
to) have temporal locality
e.g. loop terminator: #taken=n-1 / #not-taken=1
= Simple prediction mechanism = 1-bit predictor
= 1-bit array indexed by a segment of branch inst address
= Record 0 (not-taken) / 1 (taken) for each branch inst
=>predict (not) taken if it was (not) taken last time
=>sensitive to noise (e.g. miss twice for loop terminator)
= 2-bit saturate-counter predictor
= 2-bit array indexed by a segment of branch inst address
= not-taken = -1/ taken & +1 (min=0/ max=3)
= 0 or 1= predict as not-taken / 2 or 3 9 predict as taken

<one miss does not change its mind
(e.g. #miss of loop terminator = 1)

e
T

29
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Branch Prediction (4/8)

= 1bit vs 2bit
for(y=0;y<4;y++) Tor(x=0;x<4;j++)
unly][xJ=ulyl [XJ+dthh*(...);

T
T

actual | 1bit |2bit T : taken
N : not-taken
T N [c=22T

T T |[c=39T
T T |c=32T
N T

c=3>T
accuracy = 50%

X
1
2
3
4

accuracy = 75%

30
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Branch Prediction (5/8)

= Very Dangerous Code
for(i=0;i<N;i++) {

if(i&1){forodd i}
else

{foreven i} accuracy for TNTNTN...
H = 1/2 at most, 0 at worst

= for(i=0;i<N;i+=2) {foreven i}
for(i=1;i<N;i+=2) {forodd i}

or

for(i=0;i<N;i+=2) {

{for even i} if possible
{for odd i+1}

).

P ]
T
-re
—
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Branch Prediction (6/8)

= Using Global history (GH)

= 2-bit prediction is too local
= spatial: only aware of a particular branch
= temporal: remember almost nothing of actions except for
last four
= GH: remember all directions of last n branches
(e.g.n=8)
= Mix GH into index of 2-bit predictor
= gselect (64K)
pred_table[gh][branch_inst_addr&0xFF]
= gshare (64K)
pred_table[gh~(branch_inst_addr&0OxFFFF)];

¥
in KU, gshare or its variant
is used (n =32?)
31 32
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= Branch Prediction (7/8) %= Branch Prediction (8/8)

Effect of GH (1/2)
for(t=0;t<tmax;t++) {
for(y=0;y<4;y++) for(x=0;x<4;j++)
un[y][x]=uly][x]+dthh*(...);
tmp=un; un=u; u=tmp;

Effect of GH (2/2)

for(p=h;p!=NULL;p=p->next){
if (p->data==x) break;

¥
if (p==NULL) ...

1}‘or(t): T T = Truth value of p==NULL
for(y): T T T N T T T N = last branch is for p->data==x (true) < false
For():TTTN TTTN TTTN TTTN TTTN TTTN TTTN TTTN = last branch is for p!=NULL (false) = true
y==0 y!=0 = predictable as GH=?????T = false / ?2????N < true
X |GH for(x) | pred |actual |x|GH for(x) | pred |actual n 1F(i&1){...}else{...}is also predictable but ...
I|TTTINNT |TTT...| T T I|TTTINT|TTT...| T T
2 [TTNNTT |TTT... T T 2 (TTTINTT|TTT. .. T T
B|TNNTTT|TTT...| T T B|TINTTT|TTT...| T T
A4 NNTTTT|NNN...| N N A4 |TNTTTT|NNN...| N N
33 34
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Predicated Instruction (1/2)

Conditional Branch & SIMD (1/2)
for(i=0;i<n;i++){

it (a[il<0) a[i]=-a[i];
.

/* a[i]=abs(a[il):
ly correct transformation |

if (a[i+0]<0)| a[i+0]=-+a[i+0];
if (a[i+1]<0)| a[i+1] [i+1];
if (a[i+2]<0)| a[i+2] [i+2];
if (a[i+3]<0) a[i+3]=/a[i+3];

SIMD-vectorizable of course

3 )
How SIMD-vectorize
these branches??

35

Predicated Instruction (1/2)

Conditional Branch & SIMD (1/2)
for(i=0;i<n;i++){

if (a[i]<0) a[i]=-a[i];
3

for(i=0;i<n;i+=4){
int cO=a[i+0]<0;
int cl=a[i+1 ;
int c2=a[i+2 ;
int c3=a[i+3]40;

/* a[i]=abs(a[il):

= transform latency from
branch to arithmetic
= no misprediction because

a[i+0]=(cO ? t0 :
a[i+1]=|cl ? t1 :
afi+2]=|c2 ? 12 : not predicting

a[i+3]=(c3 ? t3 : > efficient (usually)

}
conditional move 36
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= Basics of Cache (1/7)

—

)

= Overview of Cache (# Cash)

= High-speed memory to fill the access speed gap
between CPU and main memory

CPU : cache : memory =1 :1~20 : 50~100
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= Basics of Cache (2/7)

—

= Configuration Parameter:
L X S8 X W =capacity (e.g. 32KB)

Aline size (=32~256B)
L =648 line: unit of bookkeeping & data transfer memory

<+—» cache 0000 2000 4000 6000 8000 AOOO COO0 EOQO eee

)

= Keep data to be likely accessed in near future 82 ggig
2exploiting/expecting locality 02 0080
= temporal: repeated access to data ac d recently X 03 ooco
= spatial:  access to data proximate to recently accessed PR = S R R e =
data 0| 7c 1F00
D accesses against expectation result in very s i
poor performance 7F 1FCO
= e.g. skipping accesses in a huge array W\g4 #ways (=1~16) = #lines in a set
37 conflict if #lines > W = (LRU) replacement |33
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= Basics of Cache (3/7) = Basics of Cache (4/7)
« L > 8B (= sizeof(double)) : n L=2/,8=259 L X §=2/ts
. ) . . miss rate =8/L . . . . .
= Exploiting/expecting spatial locality _ = Data pair conflict with each other if their address
= access to u[x]=> accesses to u[x+1], U[x+2], ... difference is 2( *s)n.
= Efficient transfer from/to memory by contiguous = Arrays of power-of-two size are dangerous.
access . n #define N 1024 conflict with each other
= latency = 50~100cycle, bandwidth = 5~10B/cycle double u[NJ[N],un[NI[NI; LXS<8192 & W<4
> for(y=0;y<ny;y++) For(x=0;x<nx;x++) oo = misses always
un[y]IX1=ulyl IX]*dthh*(. . .); o eithine
£ 0 X<nX-x4+) For(v=0-yv<ny:-vit un[y]1[xJ=uly][x]+dthh*(uly] [x+1]+0Ly] [x-1]+
or (x=0;X<nx;Xx++) (y=0;y<ny;y uly+1] [xJ+uly-11 xJ+4*uly1 X1 ;
un[y1[x]=uly]l[x]*dthh*(...); = struct {double x[N],y[N].z[N].
For(i=0;i<N;i++){ j=F(i); VX[N],vy[N],vz[N];} obj;
obj[§1.x+=0bj[§1.vx; obj[j].y+=obj[j] VY <(peter) For(i=0; i<N; i++){
=0; H = H obj.z[i]+=obj.vz[i];
obj.x[j]+=obj.vx[j1; obj.y[j]+=obj.vy[j]; 3} LXS<8192 & W<6
3 39 = misses always 40
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= % Basics of Cache (6/7)

= Basics of Cache (5/7)

= 3C of Cache Misses

= Compulsory miss
= data is not in cache on its first access
2inevitable
= Capacity miss
= #-of lines accessed after last access > capacity
€poor temporal (and/or spatial) locality
= Conflict miss
= #-of competing lines accessed after last access > #ways
€e.g. discontiguous accesses (esp. with 2" stride)

41

= (Representative) Memory Hierarchy
L2=12(+) L3=34(++) lat = 50~200

?. ?. ?
patokadiald lat = 5~30
(+1.5K? pop) | 1at = 1~4(+)
CPU core
L1 l-cache |
(10~100kB) | €
36B/c
= "(i f:n‘;';e (18core)|  memory
64B/c easic (L2)| (& L3 cache) [ g (1GB~)
LMA T4 | pcaone (78 )
(10~100kB) [€ >
L —— 328Ic ‘;vrT

L2: 64X512X8

64X64X8 WB
=32KB

=256KB/core
Write Through: immediately write to lower level L3: 64X2048?X20?X18
Write Back: write to lower level at replacement =45MB/18core 42
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= Basics of Cache (7/7)

—

)

= Prefetch = Load a line to cache if the line is
expected to be accessed in near future
= Hardware Prefetch
= prefetch based on detection of particular access pattern
e.g. in KU’s supercomputer

contiguous access to L1D-»prefetch next line
last k addresses of aload =b +s xi(0<i<k)
Dprefetch line including b + s x k to L1D
a 64B-line in L2 is loaded to L1
=prefetch next line to L2 if absent
watch 32(?) contiguous access streams
=>if L1 require a line in a stream, prefetch next line to L2/L3
= Software Prefetch

= prefetch a line to L1 by a dedicated instruction

= compiler inserts prefetch instructions estimating access
patterns and effectiveness

43
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).

2 TLB (1/2)
= Virtual/Physical Address Translation

virtual space translation physical space
232 or 254/ process table 230 ~ 40+

page —
(=4KB)

4

cache to keep
recent translation TLB

44
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= TLB (2/2)

= Translation Look-aside Buffer
= Cache of PA translated from VA
= key = virtual page number (high-order bits of VA)
= data = physical page number (high-order bits of PA)
= Relatively small = 10~1000 entries
= @KU: L1-ITLB =32 x 4way = 128 (+a)
L1-DTLB =16 x 4way = 64 (+a+p)
L2-TLB =256 x 6way = 1536 (+a)
= miss =» page table lookup = large overhead
=<>many accesses with long stride = miserable
for(x=0;x<1000;x++) for(y=0;y<1000;y++)
un[yl[x]=uly1[x]+dthh*(...);
2000 pages are accessed in inner loop = 2 misses/iteration
= L2/L3 cache is accessed by PA
=>contiguous in VA # contiguous in L2/L3 45
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% Performance with Cache & TLB (1/7)

= Memory Access Pattern
for(y=0;y<ny;y++) For(x=0;x<nx;x++)
un[ylDxJ=ulyl[x1+
dthh*(uly][x+1]+uly][x-1]+
uly+11[x1+uly-11[x1-4*ulyl[xD):

nx is small
=> thanks to u[y+1][x],
uly]l[x] and u[y-1][x]

nx+2 hit cache

un |

k.

e
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7 Performance with Cache & TLB (2/7)

nxorny=21%xk-2
> ulx]Ly1&un[x1Ly]l

exec time / iter [ns]

5 AT 2T are in a set of L3C
L1C L2C L3C
>
4+ #L3C misses
=4/ 8 iteration
3t
overhead of
inner loop
2F
"l
ST LT #L3C misses
i
Lic o L2c h L:"c > ) X =2/ 8 iteration

0
100 101 102 103 104 105 108 107
3.2K 32K 320K 3.2m 32m 320M 3.2G 32G [B]

nxor ny

nxXny 47
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% Performance with Cache & TLB (3/7)

= Optimization for Large nx : x-dim Tiling
For (xx=0;xx<nx;xx+=TX) {
Nt Nxx=(Xx+TX<NX)?xx+TX:nx
for(y=0;y<ny;y++) For(x=>;x<nxx;x++) {
uun[y1[x]=uuly][x1+
dthh*(uu[y] [x+1]+uu[y][x-1]+
uu[y+1]1[xJ+uu[y-11[x]-4*uuly1[x1);

¥
= large nx: #misses / 8-iteration =4 = 2
T
T 444 s
LILVLAL

»

48
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= Performance with Cache & TLB (4/7)
= Super Optimization = Temporal Tiling

Massively Parallel Comp. Arch. (2) © 2010-2017 H. Nakashima

~ Performance with Cache & TLB (5/7)

baseline
— F
exec time | iter [ns] (TX=1000)

)

)

2.0 T~ x1.20
perimeter+0 (or +1) 15
=+1 (&+ :
Dt=+1 (&+0) ~x2.55
perimeter+1 (or +2) 1.0
Dt=+2 (&+1)
0.5 temporal tiling
: (TX=500,TY=120,TT=25)
tile < cache perimeter+2 (or +3) .
Salmost hit Dt=+3 (&+2) 0.0
) 0 5 10 15 20 25 30 [X10%]
5 0 0.4 1.6 3.6 6.4 10.0 14.4 [GB]
perimeter+3 (or +4) nx =ny
Dt=+4 (&+3) nx x ny
50
L e
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% Performance with Cache & TLB (6/7)

= Contiguous vs Discontiguous Accesses
for(y=0;y<ny;y++) For(x=0;x<nx;x++)
uun[y] XJ=uuly]1 [x1+
dthh*(uu[y] [x+1]+uu[y][x-1]+
uuly+1]1[x]+uuly-11[x]-4*uulyl[x1)
= #cache-misses = 2~4/8-iteration
#TLB-misses =2~4/256K-iteration

% Performance with Cache & TLB (7/7)

exec time / iter [ns]
15

0

x 5.4
5
for(x=0;x<nx;x++) For(y=0;y<ny;y++)
dthh*(uuly] [x+1]+uuly][x-1]+
uu[y+11[x1+uuly-11[x1-4*uuly1[x1) 0
. . R 10! 102 103 10¢ 108
= #cache-misses = 2.25/1-iteration 16K 160K 16M 166 1606 [E]
#TLB-misses =2/1-iteration o nx = ny o
nx x ny

2 Massively Parallel Comp. Arch. (2) © 2010-2017 H. Nakashima
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X Conclusion: Key Issues of HPC

= Pipeline / ILP / out-of-order / SIMD
= Relying on compiler/hardware is almost safe.
= Remember restrict in C programming
= Branch Prediction / Speculation
= Loops with many iterations are usually OK.
= Some if-else in loops are really dangerous.
= Cache / TLB
= Dominant performance factor.
= Don’t let down your stupid hardware.

= Small care can improve performance significantly.
= As much contiguous as possible.
= Avoid access conflict if possible.
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