ADVANCED FLUID ENGINEERING
Papers
  1. Deformation and breakup of a ferrofluid droplet in shear flow under magnetic field.
    Kawabata Y, Ishida S*, Imai Y.
    Phys Fluids 36, 033353 (2024).
  2. A computational model of red blood cells using an isogeometric formulation with T-splines and a lattice Boltzmann method.
    Asai Y, Ishida S, Takeda H, Nakaie G, Taniguchi Y, Terahara T, Takizawa K, Imai Y*.
    J Fluids Struct 125, 104081 (2024).
  3. Isogeometric boundary element analysis of creasing of capsule in simple shear flow.
    Takeda H*, Asai Y, Ishida S, Taniguchi Y, Terahara T, Takizawa K, Imai Y*.
    J Fluids Struct 124, 104022 (2024).
  4. Effects of peristaltic amplitude and frequency on gastric emptying and mixing: a simulation study.
    Ebara R, Ishida S, Miyagawa T, Imai Y*.
    J R Soc Interface 20, 20220780 (2023).
  5. Peristaltic transport of a power-law fluid induced by a single wave: A numerical analysis using the cumulant lattice Boltzmann method.
    Maeyama K, Ishida S, Imai Y*.
    Phys Fluids 34, 111911 (2022).
  6. Effect of cilia-induced surface velocity on cerebrospinal fluid exchange in the lateral ventricles.
    Yoshida H, Ishida S, Taiki Yamamoto, Takayuki Ishikawa, Yuichi Nagata, Kazuhito Takeuchi, Hironori Ueno, Imai Y*.
    J R Soc Interface 19, 20220321 (2022).
  7. Field-controlling patterns of sheared ferrofluid droplets.
    Ishida S*, Yang D, Meng F*, Matsunaga D*.
    Phys Fluids 34, 063309 (2022).
  8. Particle segregation using crystal-like structure of capsules in wall-bounded shear flow.
    Ishida S, Matsumoto R, Matsunaga D*, Imai Y*.
    Phys Rev Fluids 7, 063601 (2022).
  9. Liquid transport produced by a cluster of peristaltic contractions in a circular channel.
    Oyama T, Ishida S, Maeyama K, Miyagawa T, Imai Y*.
    Phys Rev Fluids 6, 093102 (2021).
  10. The influence of interstitial cells of Cajal loss and aging on slow wave conduction velocity in the human stomach.
    Wang TH-H, Angeli T, Ishida S, Du P, Gharibans A, Paskaranandayadivel N, Imai Y, Miyagawa T, Abell TL, Farrugia G, Cheng LK, O'Grady G*.
    Physiol Rep 8, e14659 (2021).
  11. Rheology of a dilute ferrofluid droplet suspension in shear flow: Viscosity and normal stress differences.
    Ishida S*, Matsunaga D*.
    Phys Rev Fluids 5, 123603 (2020).
  12. Complex viscosity of dilute capsule suspensions: a numerical study.
    Matsunaga D*, Imai Y.
    J Biomech Sci Eng 15, 20-00102 (2020).
  13. Multiscale modeling of human cerebrovasculature: A hybrid approach using image-based geometry and a mathematical algorithm.
    Ii S*, Kitade H, Ishida S, Imai Y, Watanabe Y, Wada S.
    PLoS Comput Biol 16(6), e1007943 (2020).
  14. Perioperative hemodynamic changes in the thoracic aorta and the arch branches in patients with aortic valve stenosis: a prospective serial 4D-flow MRI study.
    Kamada H*, Ota H, Nakamura M, Imai Y, Ishida S, Sun W, Sakatsume K, Saiki Y, Yoshioka I, Takase K.
    Semin Thorac Cardiovasc Surg 3, 25-34 (2020).
  15. A computational fluid dynamics simulation of liquid swallowing by impaired pharyngeal motion: bolus pathway and pharyngeal residue.
    Ohta J, Ishida S, Kawase T, Katori Y, Imai Y*.
    Am J Physiol Gastrointest Liver Physiol 317, G784-G792 (2019).
  16. Shear viscosity of bimodal capsule suspensions in simple shear flow.
    Ito H, Matsunaga D, Imai Y*.
    Phys Rev Fluids 4, 113601 (2019).
  17. Capture event of platelets by bolus flow of red blood cells in capillaries.
    Takeishi N*, Imai Y, Wada S.
    J Biomech Sci Eng 14, 18-00535 (2019).
  18. Quantification of gastric emptying caused by impaired coordination of pyloric closure with antral contraction: a simulation study.
    Ishida S, Miyagawa T, O'Grady G, Cheng LK, Imai Y*.
    J R Soc Interface 16, 20190266 (2019).
  19. Hemorheology in dilute, semi-dilute, and dense suspensions of red blood cells
    Takeishi N*, Rosti ME, Imai Y, Wada S, Brandt L.
    J Fluid Mech 872, 818-848 (2019).
  20. Factors diminishing cytoadhesion of red blood cells infected by Plasmodium falciparum in arterioles.
    Ishida S, Ami A, Imai Y*.
    Biophys J 113, 1163-1172 (2017).
  21. Nodal cilia-driven flow: development of a computational model of the nodal cilia axoneme.
    Omori T*, Sugai H, Imai Y, Ishikawa T.
    J Biomech 61, 242-249 (2017).
  22. Capture of microparticles by bolus flow of red blood cells in capillaries.
    Takeishi N, Imai Y*.
    Sci Rep 7, 5381 (2017).
  23. Shear-induced platelet aggregation and distribution of thrombogenesis at the stenotic vessel.
    Kamada H*, Imai Y, Nakamura M, Ishikawa T, Yamaguchi T.
    Microcirculation 24, e12355 (2017).
  24. Relationship between gastric motility and liquid mixing in the stomach.
    Miyagawa T, Imai Y*, Ishida S, Ishikawa T.
    Am J Physiol Gastrointest Liver Physiol 311, G1114-G1121 (2016).
  25. Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling.
    Berry R, Miyagawa T, Paskaranandavadivel N, Du P, Angeli TR, Trew ML, Windsor JA, Imai Y, O'Grady G, Cheng LK*.
    Am J Physiol Gastrointest Liver Physiol 311, G895-G902 (2016).
  26. Reorientation of red blood cells during sedimentation.
    Matsunaga D*, Imai Y, Wagner C, Ishikawa T.
    J Fluid Mech 806, 102-128 (2016).
  27. A numerical model of a red blood cell infected by Plasmodium falciparum malaria: coupling cell mechanics with ligand-receptor interactions.
    Ishida S, Imai Y*, Ichikawa Y, Nix S, Matsunaga D, Omori T, Ishikawa T.
    Sci Technol Adv Mater 17, 454-461 (2016).
  28. Cell adhesion during bullet motion in capillaries.
    Takeishi N, Imai Y*, Ishida S, Omori T, Kamm RD, Ishikawa T.
    Am J Physiol Heart Circ Physiol 311, H395-H403 (2016).
  29. Numerical methods for simulating blood flows at micro-, macro- and multi-scales.
    Imai Y*, Omori T, Shimogonya Y, Ishikawa T, Yamaguchi T.
    J Biomech 49, 2221-2228 (2016).
  30. Lateral migration of a capsule in a parabolic flow.
    Nix S, Imai Y*, Ishikawa T.
    J Biomech 49, 2249-2254 (2016).
  31. Nutrient uptake in a suspension of squirmers.
    Ishikawa T*, Kajiki S, Imai Y, Omori T.
    J Fluid Mech 789, 481-499 (2016).
  32. Deformation of a micro torque swimmer.
    Ishikawa T*, Tanaka T, Imai Y, Omori T, Matsunaga D.
    Proc Roy Soc Lond A 472, 20150604 (2016).
  33. Rheology of a dense suspension of spherical capsules under simple shear flow.
    Matsunaga, D, Imai Y*, Yamaguchi T, Ishikawa T.
    J Fluid Mech 786, 110-127 (2016).
  34. Shape matters: Near-field fluid mechanics dominates collective motions of ellipsoidal squirmers.
    Kyoya K, Matsunaga D, Imai Y, Omori T, Ishikawa T.*
    Phys Rev E 92, 063027 (2015).
  35. Flow of a circulating tumor cell and red blood cells in microvessels.
    Takeishi N, Imai Y*, Yamaguchi T, Ishikawa T.
    Phys Rev E 92, 063011 (2015).
  36. Hemodynamics in the microcirculation and in microfluidics.
    Omori T*, Imai Y, Kikuchi K, Ishikawa T, Yamaguchi T.
    Ann Biomed Eng 43, 238-257 (2015).
  37. Deformation of a spherical capsule under oscillating shear flow.
    Matsunaga D, Imai Y*, Yamaguchi T, Ishikawa T.
    J Fluid Mech 762, 288-301 (2015).
  38. A full GPU implementation of a numerical method for simulating capsule suspensions.
    Matsunaga D, Imai Y*, Omori T, Ishikawa T, Yamaguchi T.
    J Biomech Sci Eng 9, 14-00039 (2014).
  39. Lateral migration of a spherical capsule near a plane wall in Stokes flow.
    Nix S, Imai Y*, Matsunaga D, Yamaguchi T, Ishikawa T.
    Phys Rev E 90, 043009 (2014).
  40. Hydrodynamic interaction between two red blood cells in simple shear flow: its impact on the rheology of a semi-dilute suspension.
    Omori T*, Ishikawa T, Imai Y, Yamaguchi T.
    Comput Mech 54, 933-941 (2014).
  41. Structure of dimeric axonemal dynein in cilia suggests an alternative mechanism of force generation.
    Ueno H, Bui KH, Ishikawa T, Imai Y, Yamaguchi T, Ishikawa T*.
    Cytoskeleton 71, 412-422 (2014).
  42. Leukocyte margination at arteriole shear rate.
    Takeishi N, Imai Y*, Nakaaki K, Yamaguchi T, Ishikawa T.
    Physiol Rep 2, e12037 (2014).
  43. Separation of motile bacteria using drift velocity in a microchannel.
    Ishikawa T*, Shioiri T, Numayama-Tsuruta K, Ueno H, Imai Y, Yamaguchi T.
    Lab Chip 14, 1023-1032 (2014).
  44. Fluctuation of cilia-generated flow on the surface of the tracheal lumen,
    Kiyota K, Ueno H, Numayama-Tsuruta K, Haga T, Imai Y, Yamaguchi T, Ishikawa T*.
    Am J Physiol Lung Cell Mol Physiol 306, L144-L151 (2014).
  45. Numerical analysis of a red blood cell flowing through a thin micropore.
    Omori T*, Hosaka H, Imai Y, Yamaguchi T, Ishikawa T.
    Phys Rev E 89, 013008 (2014).
  46. Entrapment of ciliates at the water-air interface.
    Ferracci J*, Ueno H, Numayama-Tsuruta K, Imai Y, Yamaguchi T, Ishikawa T*.
    PLOS One 8, e75238 (2013).
  47. Computational study on thrombus formation regulated by platelet glycoprotein and blood flow shear.
    Kamada H*, Imai Y, Nakamura M, Ishikawa T, Yamaguchi T.
    Microvasc Res 89, 95-106 (2013).
  48. Shear-induced diffusion of red blood cells in a semi-dilute suspension.
    Omori T*, Ishikawa T, Imai Y, Yamaguchi T.
    J Fluid Mech 724, 154-174 (2013).
  49. Antral recirculation in the stomach during gastric mixing.
    Imai Y*, Kobayashi I, Ishida S, Ishikawa T, Buist M, Yamaguchi T.
    Am J Physiol Gastrointest Liver Physiol 304, G536-G542 (2013).
  50. Membrane tension of red blood cells pairwisely interacting in simple shear flow.
    Omori T*, Ishikawa T, Imai Y, Yamaguchi T.
    J Biomech 46, 548-553 (2013).
  51. Computational analysis on the mechanical interaction between thrombus and red blood cells: Possible causes of membrane damage of red blood cells at microvessels.
    Kamada H*, Imai Y, Nakamura M, Ishikawa T, Yamaguchi T.
    Med Eng Phys 34, 1411-1420 (2012).
  52. Tension of red blood cell membrane in simple shear flow.
    Omori T*, Ishikawa T, Barthès-Biesel D, Salsac A-V, Imai Y, Yamaguchi T.
    Phys Rev E 86, 056321 (2012).
  53. Separation of cancer cells from a red blood cell suspension using inertial force.
    Tanaka T, Ishikawa T*, Numayama-Tsuruta K, Imai Y, Ueno H, Matsuki N, Yamaguchi T.
    Lab Chip 12, 4336-4343 (2012).
  54. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D, Imai Y*, Nakaaki K, Ishikawa T, Yamaguchi T.
    J Biomech 45, 2684-2689 (2012).
  55. Patient-specific modelling of pulmonary airflow using GPU cluster for the application in medical practice.
    Miki T*, Wang X, Aoki T, Imai Y, Ishikawa T, Takase K, Yamaguchi T.
    Comput Meth Biomech Biomed Eng 15, 771-778 (2012).
  56. Hemodynamics in the pulmonary artery of a patient with pneumothorax.
    Christophe J-J*, Ishikawa T, Imai Y, Takase K, Thiriet M, Yamaguchi, T.
    Med Eng Phys 34, 725-732 (2012).
  57. Deposition of micrometer particles in pulmonary airways during inhalation and breath holding.
    Imai Y*, Miki T, Ishikawa T, Aoki T, Yamaguchi T.
    J Biomech 45, 1809-1815 (2012).
  58. Reorientation of a non-spherical capsule in creeping shear flow.
    Omori T*, Imai Y, Yamaguchi T, Ishikawa T*.
    Phys Rev Lett 108, 138102 (2012).
  59. Inertial migration of cancer cells in blood flow in microchannels.
    Tanaka T*, Ishikawa T, Numayama-Tsuruta K, Imai Y, Ueno H, Yoshimoto T, Matsuki N, Yamaguchi T.
    Biomed Microdev 14, 25-33 (2012).
  60. Parallel simulation of cellular flow in microvessels using a particle method.
    Alizadehrad D, Imai Y*, Nakaaki K, Ishikawa T, Yamaguchi T.
    J Biomech Sci Eng 7, 57-71 (2012).
  61. Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation.
    Leble V*, Lima R, Dias R, Fernandes C, Ishikawa T, Imai Y, Yamaguchi, T.
    Biomicrofluidics 5, 044120 (2011)
  62. Energy transport in a concentrated suspension of bacteria.
    Ishikawa T*, Yoshida N, Ueno H, Wiedeman M, Imai Y, Yamaguchi T.
    Phys Rev Lett 107, 028102 (2011).
  63. Margination of red blood cells infected by Plasmodium falciparum in a microvessel.
    Imai Y*, Nakaaki K, Kondo H, Ishikawa T, Lim CT, Yamaguchi T,
    J Biomech 44, 1553-1558 (2011).
  64. Transport phenomena of microbial flora in the small intestine with peristalsis.
    Ishikawa T*, Sato T, Mohit G, Imai Y, Yamaguchi T.
    J Theor Biol 279, 63-73 (2011).
  65. Comparison between spring network models and continuum constitutive laws : Application to the large deformation of a capsule in shear flow.
    Omori T*, Ishikawa T, Barthès-Biesel D, Salsac A-V, Walter J, Imai Y, Yamaguchi T.
    Phys Rev E 83, 041918 (2011).
  66. A fourth-order Cartesian local mesh refinement method for the computational fluid dynamics of physiological flow in multi-generation branched vessels.
    Miki T*, Imai Y, Ishikawa T, Wada S, Aoki T, Yamaguchi T.
    Int J Numer Meth Biomed Eng 27, 424-435 (2011).
  67. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence.
    Ishikawa T*, Fujiwara H, Matsuki N, Imai Y, Ueno H, Yamaguchi T.
    Biomed Microdev 13, 159-167 (2011).
  68. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube.
    Saadatmand M*, Ishikawa T, Abdekhodaie MJ, Imai Y, Ueno H, Yamaguchi T.
    J Biomech 44, 170-175 (2011).
  69. Patient-specific morphological and blood flow analysis of pulmonary artery in the case of severe deformations of the lung due to pneumothorax.
    Christophe J-J*, Ishikawa T, Matsuki N, Imai Y, Takase K, Thiriet M, Yamaguchi T.
    J Biomech Sci Eng 5, 485-498 (2010).
  70. Designing a clinical education program for engineers: the ESTEEM project.
    Matsuki N*, Takeda M, Yamano M, Imai Y, Ishikawa T, Yamaguchi T.
    J Interprof Care 24, 738-741 (2010).
  71. Activation of caspases and apotosis in response to low-voltage electric pulses.
    Matsuki N*, Takeda M, Ishikawa T, Kinjo A, Hayasaka T, Imai Y, Yamaguchi T.
    Oncol Rep 23, 425-1433 (2010).
  72. Modeling of hemodynamics arising from malaria infection.
    Imai Y*, Kondo H, Ishikawa T, Lim CT, Yamaguchi T.
    J Biomech 43, 1386-1393 (2010).
  73. Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions.
    Yamaguchi T, Ishikawa T, Imai Y, Matsuki N, Xenos M, Dengand Y, Bluestein D*.
    Ann Biomed Eng 38, 1225-1235 (2010).
  74. ATP transport in saccular cerebral aneurysms at arterial bends.
    Imai Y*, Sato K, Ishikawa T, Comerford A, David T, Yamaguchi T.
    Ann Biomed Eng 38, 927-934 (2010).
  75. Development of a biologically inspired locomotion system for a capsule endoscope.
    Hosokawa D, Ishikawa T*, Morikawa H, Imai Y, Yamaguchi T.
    Int J Med Robot Comput Assis Surg 5, 471-478 (2009).
  76. A realistic simulation of saccular cerebral aneurysm formation: focusing on a novel haemodynamics index, the gradient oscillatory number.
    Shimogonya Y*, Ishikawa T, Imai Y, Matsuki N, Yamaguchi T.
    Int J Comput Fluid Dyn 23, 583-593 (2009).
  77. An internet-based wearable watch-over system for elderly and disabled utilizing EMG and accelerometer.
    Kishimoto M, Yoshida T, Hayasaka T, Mori D, Imai Y, Matsuki N, Ishikawa T*, Yamaguchi T.
    Technol Health Care 17, 121-131 (2009).
  78. Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PIV system.
    Lima R*, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T.
    Ann Biomed Eng 37, 1546-1559 (2009).
  79. Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.
    Matsuki N*, Takeda M, Yamano M, Imai Y, Ishikawa T, Yamaguchi T.
    Adv Physiol Edu 33, 91-97 (2009).
  80. Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel.
    Fujiwara H, Ishikawa T*, Lima R, Matsuki N, Imai Y, Kaji H, Nishizawa M, Yamaguchi T.
    J Biomech 42, 838-843 (2009).
  81. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON).
    Shimogonya Y*, Ishikawa T, Imai Y, Matsuki N, Yamaguchi T.
    J Biomech 42, 550-554 (2009).
  82. Hemodynamic analysis of microcirculation in malaria infection.
    Kondo H, Imai Y*, Ishikawa T, Tsubota Y, Yamaguchi T.
    Ann Biomed Eng 37, 702-709 (2009).
  83. Formation of saccular cerebral aneurysms may require proliferation of the arterial wall: computational investigation.
    Shimogonya Y*, Ishikawa T, Imai Y, Mori D, Matsuki N, Yamaguchi T.
    J Biomech Sci Eng 3, 431-442 (2008).
  84. Inflow into saccular cerebral aneurysms at arterial bends.
    Imai Y*, Sato K, Ishikawa T, Yamaguchi T.
    Ann Biomed Eng 36, 1489-1495 (2008).
  85. Low voltage pulses can induce apoptosis.
    Matsuki N*, Ishikawa T, Imai Y, Yamaguchi T.
    Cancer Lett 269, 93-100 (2008).
  86. Development of a wearable system module for monitoring physical and mental workload.
    Kim S*, Nakamura H, Yoshida T, Kishimoto M, Imai Y, Matsuki N, Ishikawa T, Yamaguchi T.
    Telemed e-Health 14, 939-945 (2008).
  87. Radial dispersion of red blood cells in blood flowing through glass capillaries: role of Haematocrit and geometry.
    Lima R*, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T.
    J Biomech 41, 2188-2196 (2008).
  88. The Importance of parent artery geometry in intra-aneurysmal hemodynamics.
    Sato K, Imai Y*, Ishikawa T, Matsuki T, Yamaguchi T.
    Med Eng Phys, 30, 774-782 (2008).
  89. Conservative form of Interpolated Differential Operator scheme for compressible and incompressible fluid dynamics.
    Imai Y*, Aoki T, Takizawa K.
    J Comput Phys 227, 2263-2285 (2008).
  90. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R*, Wada S, Tanaka S, Takeda M, Ishikawa T, Tsubota K, Imai Y, Yamaguchi T.
    Biomed Microdevices 10, 153-167 (2008).
  91. Development of a wearable surveillance system using gait analysis.
    Yoshida T*, Mizuno F, Hayasaka T, Tsubota K, Imai Y, Ishikawa T, Yamaguchi T.
    Telemed e-Health 13, 703-714 (2007).
  92. Hydrodynamic interactions between two swimming bacteria.
    Ishikawa T*, Sekiya G, Imai Y, Yamaguchi T.
    Biophys J 93, 2217-2225 (2007).
  93. Effect of wall motion on arterial wall shear stress.
    Fukui T*, Parker KH, Imai Y, Tsubota K, Ishikawa T, Wada S, Yamaguchi T.
    J Biomech Sci Eng 2, 58-68 (2007).
  94. Numerical simulation of a low-hematocrit blood flow in a small artery with stenosis.
    Ishikawa T*, Kawabata N, Imai Y, Tsubota K, Yamaguchi T.
    J Biomech Sci Eng 2, 12-22 (2007).
  95. Comparison of efficient explicit schemes for shallow water equations – characteristics-based fractional-step method and multimoment Eulerian scheme.
    Imai Y*, Aoki T, Shoucri M.
    J Appl Meteorol Climatol 46, 388-395 (2007).
  96. Computational blood flow analysis - New trends and methods.
    Yamaguchi T*, Ishikawa T, Tsubota K, Imai Y, Nakamura M, Fukui T.
    J Biomech Sci Eng 1, 29-50 (2006).
  97. Accuracy study of the IDO scheme by Fourier analysis.
    Imai Y*, Aoki T.
    J Comput Phys 217, 453-472 (2006).
  98. Stable coupling between vector and scalar variables for the IDO scheme on collocated grids.
    Imai Y*, Aoki T.
    J Comput Phys 215, 81-97 (2006).
  99. A higher-order implicit IDO scheme and its CFD application to local mesh refinement method.
    Imai Y*, Aoki T.
    Comput Mech 38, 211-221 (2006).
  100. Fourth-order accurate IDO scheme using gradient-staggered interpolation.
    Imai Y*, Aoki T.
    JSME Int J B 47, 681-689 (2004).
  101. A numerical method on Cartesian grid for image-based blood flow simulation.
    Imai Y*, Aoki T, Fuse T, Ikehira H.
    Trans JSME A 70, 1232-1239 (2004) (in Japanese).